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Abstract

The ability to learn in a self-regulated way is important for adolescents' academic achievements.
Monitoring one's own learning is a prerequisite skill for successful self-regulated learning. However,
accurate monitoring has been found to be difficult for adolescents, especially for learning problem-
solving tasks such as can be found in math and biology. This study investigated whether a self-
explaining strategy, which has been found effective for improving monitoring accuracy in learning from
text, can improve monitoring and regulation-choice effectiveness, and problem-solving performance in
secondary biology education. In 2 experiments, one half of the participants learned to solve biology
problems by studying video-modeling examples, and the other one half learned by giving step-by-step
self-explanations following the video-modeling examples (Experiment 1) or by following the posttest
problem-solving tasks (Experiment 2). Results showed that in contrast to earlier studies, self-explaining
did not improve monitoring and regulation-choice effectiveness. However, the quality of self-
explanations was found to be related to monitoring accuracy and performance. Interestingly, the
complexity of the problem-solving tasks affected monitoring and regulation-choice effectiveness, and
problem-solving performance. These results are discussed in relation to the cognitive demands that
monitoring and regulating learning to solve problems combined with self-explaining pose on learners.
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It is important to be able to learn in a self-regulated way during school years and beyond (cf. lifelong
learning; OECD, 2015; Pellegrino & Hilton, 2013). Self-regulated learning (SRL) is viewed as proactive
processes that students use to acquire academic skills, such as setting goals, selecting and deploying
strategies, and self-monitoring one's effectiveness (Zimmerman, 2008). Keeping track of one's own
learning process (i.e., monitoring) and using this information to regulate the learning process (i.e., control)
are essential components of the feedback loop of self-regulated learning and thus prerequisites for
successful self-regulation (Dent & Koenka, 2016; Winne & Hadwin, 1998). Studies on monitoring learning
word pairs (for a review see, Rhodes & Tauber, 2011) and expository text (for a review see, Thiede, Griffin,
Wiley, & Redford, 2009) have found several ways to support and improve monitoring judgments (e.g.,
judgments of learning, JOLs) and study control (e.g., restudy choices). For example, generative strategies
such as making keywords (Thiede, Anderson, & Therriault, 2003) or self-explaining (Griffin, Wiley, & Thiede,
2008) were found to improve monitoring judgments when learning from expository texts.

Despite the fact that the ability to accurately monitor and regulate ones learning process might be even
more important when learning to solve problem-solving tasks than learning word pairs or expository text,
it has received less research attention. Studies on monitoring judgments (e.g., JOLs or self-assessments)
and regulating learning to solve problems by making restudy choices have shown that even with
instructional support strategies, monitoring judgments were not perfect and regulation choices were not
always related to monitoring (Baars, van Gog, de Bruin, & Paas, 2014, 2016; Baars, Visser, van Gog, de
Bruin, & Paas, 2013). Therefore, it is considered important to investigate the cognitive processes during
the making of monitoring judgments and regulation choices when learning to solve problems and how
students can best be supported in these processes. An important potentially successful strategy for
supporting students in monitoring and regulating their learning to solve problems is by asking them to give
self-explanations. Self-explaining when learning to solve problems has been found to improve problem-
solving performance (i.e., the self-explanation effect, Bielaczyc, Pirolli, & Brown, 1995; Chi, Bassok, Lewis,
Reimann, & Glaser, 1989). The current study investigates the effect of self-explaining on monitoring and
regulation of learning to solve problems.

Monitoring and Control Processes When Learning to Solve Problems
Many studies have investigated monitoring and control processes to explore to what extent students are
able to monitor and control their learning processes when learning word pairs or when learning from
expository text (e.g., Rhodes & Tauber, 2011; Thiede et al., 2009). In these studies, participants studied
word pairs or texts and were asked to give monitoring judgments for each word pair or text. Although it
has received less attention, monitoring and regulating one's learning is also important when learning to
solve problems. In problem-solving intensive domains, such as arithmetic, science, biology, economics,
and math, well-structured problems are commonly used. These problems consist of a well-defined initial
state, a known goal state, and can be solved using a constrained set of logical operators (Jonassen,
2011). An effective and efficient way of learning to solve problems when students have little or no prior
knowledge, is by studying worked-out examples, which provide a step-by-step worked-out solution
procedure to a problem (for reviews see, Atkinson, Derry, Renkl, & Wortham, 2000; Sweller, Van
Merrienboer, & Paas, 1998; van Gog & Rummel, 2010).

To investigate monitoring when learning to solve problems, students are often asked to make monitoring
judgments about their learning process. A monitoring judgment, such as a judgment of learning (JOL), can
be prompted either prospectively or retrospectively (Baars, Vink, van Gog, de Bruin, & Paas, 2014). An
example of a prospective JOL after having solved a problem-solving task is "How many steps of a similar
problem do you expect to solve on a future test?" (Baars et al., 2013). An example of a retrospective JOL
(i.e., self-assessment) after a problem-solving task is "How many steps do you think you have performed
correctly?" (Kostons, van Gog, & Paas, 2012). The accuracy of these monitoring judgments is analyzed by
comparing monitoring judgments to actual future test performance (i.e., prospectively) or to actual
performance on the problem that was judged (i.e., retrospectively).
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If students make accurate monitoring judgments, they can use this information to make accurate choices
for the remainder of their learning process (i.e., control). Together, accurate monitoring and control
processes can lead to better learning outcomes (e.g., Thiede et al., 2003). Control processes are typically
investigated by considering regulation choices one makes during learning, for example by measuring
which items are chosen for restudy (e.g., de Bruin, Thiede, Camp, & Redford, 2011; Thiede et al., 2003) or
how study time is allocated to different tasks (Ariel, Dunlosky, & Bailey, 2009; Son & Metcalfe, 2000).
Models of SRL (e.g., Winne & Hadwin, 1998; Zimmerman, 2008) propose that students base their
regulation choices on information obtained from monitoring judgments. If monitoring is accurate, using
information from monitoring judgments can lead to effective regulation choices. For example, it would be
effective to spend some more time on an item (i.e., a regulation choice) if monitoring shows that it was not
well understood or learned (i.e., discrepancy-reduction model of regulation, de Bruin et al., 2011; Nelson,
Dunlosky, Graf, & Narens, 1994).

According to a review study by Schneider (2008), children's monitoring judgments and regulation skills
improve during school years (for a review see, Schneider, 2008). Even primary schoolchildren were found
to be able to monitor their learning (e.g., Krebs & Roebers, 2010; Roebers, Schmid, & Roderer, 2009).
Also, in line with the findings for adults, primary schoolchildren made more accurate JOLs after a delay
(e.g., Schneider, Vise, Lockl, & Nelson, 2000).

Yet, research on more complex tasks such as language tasks with children (de Bruin et al., 2011) and adult
learners (Dunlosky & Lipko, 2007; Thiede et al., 2009) and problem-solving tasks with children (Baars et
al., 2014) and adult learners (Metcalfe, 1986; Metcalfe & Wiebe, 1987) has shown that learners have
difficulties to make accurate monitoring judgments and regulation choices. Fortunately, so-called
generative strategies have been found to substantially improve monitoring accuracy when college
students were learning from expository texts (Thiede, Dunlosky, Griffin, & Wiley, 2005; Thiede et al., 2009).
Generative strategies are learning activities that induce learners to elaborate on the learning materials and
generate new information (Fiorella & Mayer, 2016; Wittrock, 1992). Examples of generative strategies are
generating keywords, making summaries or concept maps, giving self-explanations, practicing problems,
or completing partially worked-out examples. Strategies that stimulate students to elaborate on, find
meaningful patterns in, or rehearse materials can foster learning (Ormrod, 2016). Moreover, generative
strategies can provide students with predictive cues on their comprehension.

According to the cue utilization framework proposed by Koriat (1997), students can use different cues to
base their monitoring judgments on, and generative strategies can provide students with valid cues to
monitor their learning. There are three types of cues: intrinsic, extrinsic, and mnemonic cues. The first type
is based on the features of the task itself, which can show the learner the ease or difficulty of the task. The
second type of cue consists of the conditions of the learning process (e.g., massed or spaced) or the
encoding operations (e.g., level of processing). The third type of cue is based on an internal indication
about how well a task is learned (e.g., cue familiarity or previous recall attempts). Both intrinsic and
extrinsic cues can affect monitoring judgments directly but mnemonic cues can affect them indirectly
(Koriat, 1997). Because generative strategies require students to process the learning materials on a
deeper level, the cues students get from generative strategies are likely to be extrinsic according to the
cue utilization framework.
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Generative strategies that have been found to improve monitoring accuracy when learning from expository
texts are delayed keyword generation (de Bruin, et al., 2011; Thiede et al., 2003), delayed summary writing
(Anderson & Thiede, 2008), immediate self-explaining (Griffin et al., 2008), and immediate concept
mapping (Redford et al., 2012). Further, de Bruin et al. (2011) and Thiede et al. (2003) showed that both for
adults and children generating keywords after a delay also improved effectiveness of regulation choices.
Keywords or summaries improved monitoring accuracy when they were made after all texts of a set of
texts had been read but not when they were made immediately after reading each text. The authors
argued that generating information after a delay is more diagnostic because it allows students to access
their situation model representation of the text which is related to deep understanding (Anderson &
Thiede, 2008). After a delay, the information will be accessed from long-term memory, which will provide
cues for monitoring that are more predictive for future performance. In contrast, making a concept map or
providing self-explanations immediately after reading a text did also improve monitoring accuracy, which
suggests that these strategies gave students the opportunity to access their situation model immediately
after reading a text (Thiede et al., 2009).

In line with the effect of generative strategies on monitoring accuracy for expository texts, solving practice
problems after worked-out example study (Baars et al., 2014, 2016) and completion of partially worked-
out examples (Baars et al., 2013) were found to improve monitoring accuracy when learning to solve
problems. Also, when using practice problems after worked-example study in secondary education,
regulation choices showed a stronger relation to JOLs for the conditions in which students were provided
with practice problems. Therefore, it seems that generating (part of) the problem-solving solution during or
after worked-out example study provided students with more diagnostic information (i.e., better cues)
about their performance, which helped them to improve their monitoring judgments when learning to solve
problems.

Although monitoring accuracy when learning to solve problems was affected by generative strategies
such as solving practice problems (Baars et al., 2014, 2016) or completion problems (Baars et al., 2013), it
was not perfect. With practice problems after worked-out examples as a generative strategy, primary
schoolchildren still overestimated their future test performance (Baars et al., 2014). In secondary
education relative accuracy of JOLs after practice problems was still only moderate (mean gamma
correlation: 0.30, Baars et al., 2016). In addition, completing partially worked-out examples as an
immediate strategy to help secondary education students monitor their learning led to underestimation of
future test performance (Baars et al., 2013).

Possibly the effect of generative strategies on monitoring and regulation of learning is affected by the
complexity of the learning materials. Monitoring (Griffin et al., 2008; van Gog, Kester, & Paas, 2011) and
regulating (Dunlosky & Thiede, 2004) one's learning processes requires working memory resources, which
are limited (Baddeley, 1986; Cowan, 2001; Sweller et al., 1998). Therefore, it is likely that the more
complex a task becomes, the more working memory is challenged when attempting to understand the
problem-solving procedure and to monitor it simultaneously. One defining element of task complexity is
the number of interacting information elements in a task (Sweller et al., 1998). For example, in a well-
defined hereditary problem with only one unknown generation (the child), there are less possible
interacting elements compared with hereditary problems with two unknown generations (one of the
parents and the child). Because of the particular strain on working memory when learning to solve new
and complex problem-solving tasks, the cues for making monitoring judgments may be affected (Kostons,
van Gog, & Paas, 2009).
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The relation between task complexity and monitoring accuracy was demonstrated in previous studies on
word pairs, that is, a negative relation between the difficulty of word pairs and monitoring accuracy (e.g.,
Griffin & Tversky, 1992; Koriat, Lichtenstein, & Fischhoff, 1980; Lichtenstein & Fischhoff, 1977). Similar
effects of task complexity on monitoring accuracy were found when learning to solve problems by
completing partially worked-out examples (Baars et al., 2013) or solving practice problems after worked-
example study (Baars et al., 2016) in secondary education. Results of both studies showed that even
though students learned from worked examples and monitored their learning by using a generative
strategy, monitoring accuracy was better for less complex tasks.

In conclusion, even though generative strategies seem to improve monitoring accuracy when learning to
solve problems, it remains unclear what information students use as a basis for their JOL after applying a
generative strategy and how their JOL is related to their regulation choices. To know what information (i.e.,
cues) students use when monitoring and controlling their learning process when learning to solve new and
complex problems, it is necessary to investigate the online processes when monitoring and controlling
learning to solve problems. The generative strategy of self-explaining when learning to solve problems
from worked examples (e.g., Chi et al., 1989; Renkl, 1999, 2002; Renkl, Stark, Gruber, & Mandl, 1998)
does not only provide more insight into the online processes of monitoring and control, it is also expected
to improve monitoring accuracy similarly to the results found with learning from text (Griffin et al., 2008).
Therefore, we expect self-explaining to be a suitable generative strategy to investigate how monitoring
accuracy can be improved and what mechanisms are responsible for this improvement when learning to
solve problems.

Self-Explaining as a Generative Strategy
Chi et al. (1989) showed that college students learned most from worked examples about Newton's law
when they explained the solutions presented in the worked examples. This was called the self-explanation
effect. Because in the study by Chi et al. (1989), time on task differed between students who self-
explained and students who did not, Renkl (1997, 1999) investigated how self-explanations affect learning
to solve math problems from worked examples using fixed learning time for all students. It was found that
the quality of self-explanations was significantly related to learning outcomes. The successful learners in
the study could be described by the features of their self-explanations. That is, successful learners gave
more principle-based explanations (i.e., identifying underlying domain principles and the meaning of
operations), frequently explicated the goal-operator combinations (i.e., the goals that can be reached by
performing a certain operation/action) and engaged in anticipative reasoning (i.e., anticipating on the next
step).

However, not all students engage in self-explaining activities, and the quality of self-explanations differs
among students (Chi et al., 1989; Renkl, 1997, 1999). Chi et al. (1989) found that "good" learners
generated explanations about actions and their relations to principles in the materials, whereas "poor"
students did not generate sufficient explanations. Similar to the results found by Chi et al., four clusters of
self-explainers were identified in a study conducted by Renkl (1997): Two of these four clusters consisted
of successful learners and two clusters consisted of unsuccessful learners. One of the successful clusters
was labeled as principle-based explainers and the other cluster was labeled as the anticipative explainers.
The principle-based explainers used mostly principle-based and goal-operator explanations, but they did
not frequently use anticipative explanations. Yet, the anticipative explainers used mostly anticipative
explanations and less principle-based or goal-operator explanations. The two unsuccessful clusters were
called passive explainers and superficial explainers. The passive explainers showed very little self-
explaining activity. The superficial explainers spent little time on each worked example and only used few
explanations.
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Chi, De Leeuw, Chiu, and LaVancher (1994) investigated whether self-explanations can also be prompted
in a text learning context and whether self-explaining enhances learning outcomes. Self-explanations
were prompted by asking the students to explain the meaning of each sentence they read. Chi et al.
(1994) replicated earlier results and showed that high explainers learned and understood more of the
learning materials compared with low explainers. Moreover, it was found that students who were
prompted, gave more self-explanations and thereby learned and understood more. Self-explaining was
assumed to aid understanding because of the following three characteristics of self-explaining. First, self-
explaining is a constructive activity by which new declarative or procedural knowledge is created. Second,
self-explaining supports the integration of newly learned materials with existing prior knowledge. If one
does not integrate new knowledge but just adds new knowledge to prior knowledge, this could lead to
incorrect knowledge or an incorrect mental model of the knowledge one needs to learn. The third
characteristic of self-explaining counteracts this problem. That is, the third characteristic of self-explaining
is that it concerns a continuous process of opportunities to detect and resolve conflicts between the
mental model one is constructing and the knowledge one should gain from the learning material (Chi et
al., 1994).

The benefits of self-explaining were found in various domains such as learning chess (de Bruin, Rikers, &
Schmidt, 2007), solving science problems (Chi et al., 1989), calculating interest (Renkl et al., 1998),
probability calculation (Renkl, 1997), and computer programming (Bielaczyc et al., 1995). Besides studies
showing the self-explanation effect for adult learners (e.g., Chi et al., 1989; de Bruin et al., 2007; Renkl,
1997, 1999), this effect was also found for younger students in secondary education (e.g., Chi et al., 1994;
Hilbert & Renkl, 2009) and even in kindergarten (Calin-Jageman & Horn Ratner, 2005). Chi et al. (1994)
investigated the self-explanation effect with eight graders learning the circulatory system from text
passages. Students were asked to explain what each sentence meant to them by giving them a general
instruction about how to self-explain at the beginning of the procedure. It was found that self-explaining
facilitated learning about the circulatory system. In the study by Hilbert and Renkl (2009), the authors
asked 11th grade children to self-explain while learning to create concept maps from examples. The
students were asked to self-explain by asking them to elaborate on how and why (parts of) their concept
map would be applicable to the example. It was found that both concept mapping skills and concept
knowledge about concept mapping were improved by self-explaining.

Next to facilitating learning, self-explaining can activate metacognitive processes to help students reflect
on their understanding of the learning materials (e.g., Ainsworth & Loizou, 2003; Griffin et al., 2008). Griffin
et al. (2008) investigated whether self-explaining does also improve monitoring accuracy. Because self-
explaining is a constructive activity, during which new knowledge is generated and integrated into the
students' mental model about the learning material (Chi et al., 1994), it was expected that self-explaining
would increase access to valid cues about one's own learning and thereby improve monitoring accuracy.
This is in line with the cue utilization model that states that extrinsic cues from deep processing of the
materials can help students monitor their learning process (Koriat, 1997). Students were instructed to
explain each sentence or paragraph in a text. Specifically, students were asked to explain and ask
themselves the following questions: "What new information does this paragraph add? How does it relate
to previous paragraphs?" "Does it provide important insights into the major theme of the text?" and "Does
the paragraph raise new questions in your mind?" (Griffin et al., 2008, p. 97). It was found that self-
explaining significantly improved monitoring accuracy. Furthermore, it was shown that readers do not
necessarily have to construct good explanations; that is, just by creating explanations, students get
access to cues about their understanding of the text. Thus, in line with the cue utilization framework, self-
explaining seems to provide students with valid cues to base their monitoring judgments on.

The Current Study
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To investigate whether and how monitoring judgments and regulation choices when learning to solve
problems can be improved by having participants self-explain their learning process, we focus on the
following research questions. Does self-explaining during learning from video-modeling examples improve
the accuracy of monitoring judgments and regulation choices? (Question 1). On the basis of findings from
learning with expository text (Griffin et al., 2008) and from problem-solving tasks (Chi et al., 1989; Renkl,
1997, 1999), it is expected that self-explaining when studying worked examples will improve monitoring
judgments accuracy (Hypothesis 1a), subsequent regulation-choice effectiveness (Hypothesis 1b), and
posttest performance (Hypothesis 1c). In addition, we aimed to investigate the quality of the self-
explanations. What types of explanations do student give and how are they related to performance?
(Question 2). On the basis of previous work (Chi et al., 1994; Renkl, 1997, 1999), we expected the
principle-based, goal-operator, and anticipative explanations to be related to more accurate monitoring
(Hypothesis 2a) and better performance (Hypothesis 2b). In addition, because working memory resources
are limited (Baddeley, 1986; Cowan, 2001; Sweller et al., 1998) and monitoring one's learning processes
requires working memory resources (Griffin et al., 2008; van Gog et al., 2011), the effect of complexity in
problem-solving tasks on monitoring accuracy, regulation choice effectiveness, and performance for the
different conditions will be explored (Question 3).

Experiment 1
Method
Participants and design

Participants were 82 Dutch secondary education students between 12 and 15 years old (Mage = 13.94, SD
= 0.40, 48 females) who were recruited from schools in the North and South-west of the Netherlands.
They were enrolled in their second year of preuniversity or higher education track (Voortgezet
Wetenschappelijk Onderwijs [VWO] and Hoger Algemeen Voortgezet Onderwijs [HAVO] in the Dutch
educational system). Parents of the students in the second year and the students themselves received a
letter with information about the purpose of the study, an invitation to participate, and that asked for their
consent. One student and her parents did not give consent, and therefore this student did not participate.
Participants completed the experiment in their classrooms and were randomly allocated to either the self-
explanation condition (n = 43) or the control condition (n = 39).

Materials

All materials were programmed and presented in Qualtrics Survey Software to students who were seated
in the computer room in their school.

Pre- and posttest tasks

The pre- and posttest consisted of three problem-solving tasks about hereditary problems based on
Mendel's laws (cf., Kostons et al., 2012). These tasks consisted of five steps: (1) determining genotypes
from phenotypes, (2) constructing a family tree, 3) determining whether the reasoning should be deductive
or inductive, (4) filling out the crosstabs, and (5) distracting the answer from the cross tabs (see Appendix
A for an example). In Problem-Solving Tasks 1 and 2, students had to find the genotype of the child based
on information about the parents (i.e., deductive). In terms of complexity, Problem-Solving Task 1 was
easier than Problem-Solving Task 2 because in Task 1, the genotypes of the parents were homozygote,
whereas in Task 2 they were heterozygote. Problem-Solving Task 3 was more complex than Problem-
Solving Tasks 1 and 2 because the genotype of one of the parents had to be found based on information
about the other parent and the child (i.e., inductive). These problem-solving tasks were cumulative in the
sense that the correct answer to previous steps was necessary to find the correct answer to the next step.

Instructional video

In an instructional video, all the new biology concepts needed to learn to solve the problem (e.g.,
homozygote or heterozygote) were explained while the five steps of solving a hereditary problem were
shown.
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Video-modeling examples

Four videos showed how to solve a hereditary problem in a worked-out, step-by-step manner based on
theories about example-based learning (e.g., van Gog & Rummel, 2010). In the videos, a model was
thinking aloud about how to solve the problem and wrote down the solution step by step (the writing was
shown as visual information; see Appendix B for an example). Two videos had a human female model, and
two videos had a human male model, neither of whom was visible but who provided an auditory
explanation about how to solve a problem. The average duration of the videos ranged between 1.34 and
2.18 min. In addition, in each video after solving the problem, the model made a written self-assessment
and verbally explained it (cf. Raaijmakers et al., 2017). The hereditary problems explained in the videos
had a similar solution procedure because in all four problems the goal was to find the genotype of the
child on the basis of information about the parents (i.e., deductive). The surface features were different
between the problems explained in the videos (e.g., length of eyelashes, hair color, freckles).

Self-explaining instruction

Students in the self-explaining condition had to explain the steps in solving the hereditary problem as was
shown in the four videos directly after watching each video-modeling example. Before the students
started self-explaining, they received a general instruction on how to self-explain the steps in the problem-
solving task in the video. They were instructed to explain how and why one should solve a step in the
problem-solving task from the example. Also, they were instructed to use their own words. Directly after
each video-modeling example, students were instructed to give a written explanation of what one should
do when performing each step by asking them: "Explain in your own words what you should do at Step
1."

Self-monitoring

After each posttest problem-solving task, students were asked to make a self-assessment as a measure
of self-monitoring (cf. Baars et al., 2014). Self-assessments were provided on a 6-point rating scale, which
asked participants to rate "How many steps did you perform correctly?", with the answer scale ranging
from 0 to 5 (0 = every step was wrong, 5 = every step was correct). The internal consistency (Cronbach's
alpha) over the three self-assessment was good with [alpha] = .76.

Regulation

Regulation was measured by asking participants to indicate whether they would need to practice the
problem-solving task they just tried to solve again.

Measurement

Self-assessment accuracy was measured as bias and absolute accuracy (Schraw, 2009). Bias was
measured as the difference between performance and self-assessment. The closer to zero the more
accurate self-assessment was. A negative bias means that a student underestimated performance and a
positive bias means a student overestimated performance. Absolute accuracy is measured as the square
root of the squared bias. The lower absolute accuracy is, the more accurate self-monitoring (i.e., self-
assessment) was. Bias and absolute accuracy per problem-solving task and the mean bias and absolute
accuracy across the posttest were calculated for 40 students from the self-explaining condition and 38
students from the control condition. This was the case because 3 students from the self-explaining and 1
student from the control condition did not fill out all the monitoring judgments.
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To calculate regulation-choice effectiveness, we used a gradual measure, which varies between 0 and 1,
based on each possible combination of self-assessment (0 through 5) and regulation choice for a
problem-solving task (0 or 1; cf. Baars et al., 2013). As can be inferred from Table 1, lower self-
assessments combined with the choice not to restudy the task resulted in lower regulation choice
effectiveness, whereas lower self-assessments combined with the choice to restudy the task resulted in
higher regulation-choice effectiveness; similarly, higher self-assessments combined with the choice not to
restudy the task resulted in higher regulation-choice effectiveness, whereas higher self-assessments
combined with the choice to restudy the task resulted in lower regulation-choice effectiveness. This
measure of regulation choices is based on the discrepancy-reduction model of regulation of study (de
Bruin et al., 2011; Nelson et al., 1994). Mean regulation-choice effectiveness over the three problem-
solving tasks was calculated. The higher this regulation-choice effectiveness was the better self-
assessment and restudy choices corresponded.

1 Scoring of Regulation Choice (Self-Assessment) Effectiveness per Problem

Type of self-explanations

The self-explanations were coded using the types principle-based, goal-operator, and anticipative
explanations from previous research (Chi et al., 1994; Renkl, 1997, 1999). Principle-based explanations
show if learners assign meaning to a problem-solving step by identifying underlying principles of that step.
Goal-operator explanations show if learners assign meaning to a step by explicating the goals they can
achieve in that step. Anticipative explanations show if learners assign meaning to a step in problem-
solving task by explaining how the step is connected to future steps in the problem-solving process (cf.
Renkl, 1999).

To be able to distinguish between self-explanations of high quality (concerning the content and/or
procedure of the problem-solving task) and those of low quality, we added two extra categories: less
helpful and not relevant. The less helpful self-explanations were only loosely related to the problem-solving
tasks. The not relevant self-explanations had nothing to do with the problem-solving task. Examples of
each of these self-explanation categories are shown in Table 2. We included high- and low-quality self-
explanations because research on generative strategies indicates close relations between quality-based
differences in strategy use and learning performance (Glogger, Schwonke, Holzapfel, Nuckles, & Renkl,
2012; Leopold & Leutner, 2015).

2 Examples of Self-Explanation Categories
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Two raters received instruction on the five types of explanations and rated 10% of the explanations to
calculate interrater reliability. The interrater analysis revealed a kappa of 0.888 (p < .001), which means
that the agreement among the raters were outstanding. One rater rated the remainder of the self-
explanations. Because we expected the types principle-based, goal-operator, and anticipative
explanations to help students monitor their learning process, we counted how often students used these
types of explanations compared with less helpful and not relevant and calculated the correlation of that
number with monitoring accuracy.

Procedure

After a pretest of three problem-solving tasks on genetics, students studied how to solve hereditary
problems by watching an instructional video and four video-modeling examples of solving the task. Half of
the students gave self-explanations per step of the problem-solving task after watching the four video-
modeling examples (self-explanation condition) and the other half did not give self-explanations, but
watched the video again (control condition). Finally, a posttest consisting of three problem-solving tasks
about hereditary problems was administered. Then students made a self-assessment and a restudy
choice after each problem-solving task.

Data analysis

Test performance

Performance on the pre- and posttest problems was rated per response to each step as either incorrect
(0) or correct (1) according to a predefined answer model. No half credits or credits for procedure were
granted. Thus pretest or posttest score could range between 0 and 5 credits per problem-solving task.

A principal component analysis (PCA) was conducted on the three items of the pretest and posttest
separately to check whether these items measured the same construct (performance on the hereditary
problems). For both PCAs, oblique rotation (promax) was used. On the pretest, the first item correlated
significantly with the second (r = .508) but not with the third item (r = .177), which was the most complex
one. The second and third item were significantly related to each other (r = .395). For the pretest, the
Kaiser-Meyer-Olkin (KMO) measure verified the sampling adequacy for the analysis (KMO = .550), and all
KMO values for individual items were >.53, which is above the acceptable limit of .5 (Field, 2009).
Bartlett's test of sphericity, [chi]2(3) = 37.180, p < .001, indicated that correlations between items were
sufficiently large for PCA. An initial analysis was run to obtain eigenvalues for each component in the data.
One component had an eigenvalue over Kaiser's criterion of 1 and explained 57.89% of the variance. All
items in the pretest cluster on one component which suggests that this component represents
performance on the hereditary problems in the pretest.

On the posttest, the first item correlated significantly with the second (r = .569) and the third item (r =
.243). The second and third item were significantly related to each other (r = .532). For the posttest, the
KMO measure verified the sampling adequacy for the analysis (KMO = .553), and all KMO values for
individual items were >.53, which is above the acceptable limit of .5 (Field, 2009). Bartlett's test of
sphericity, [chi]2(3) = 57.868, p < .001, indicated that correlations between items were sufficiently large for
PCA. Again, one component had an eigenvalue over Kaiser's criterion of 1 and explained 63.66% of the
variance. All items in the posttest cluster on one component which suggest that this component
represents performance on the hereditary problems in the posttest. Table 3 shows the component score
coefficient matrix for both the pretest and posttest.
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3 Summary of Exploratory Factor Analysis for the Pretest and Posttest in Experiment 1 and 2

Results
Descriptive statistics

Table 4 shows means and standard deviations of pretest performance, posttest performance, self-
assessment for both conditions, the number of restudy choices, bias, absolute accuracy, and regulation
choices effectiveness per problem-solving task. As a check on successful randomization, a t test showed
that both conditions did not differ on the pretest, t(82) < 1, p = .400.
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4 Means and Standard Deviations of Pretest Performance, Posttest Performance, Self-Assessment, Posttest
Mental Effort per Problem-Solving Task, the Number of Restudy Choices, Bias and Absolute Accuracy per
Problem-Solving Task per Condition for Experiments 1 and 2

Monitoring accuracy

To analyze monitoring accuracy, bias in self-assessments during the posttest was investigated. A
repeated-measures analysis of variance (ANOVA) with bias per complexity level (Task 1: easy, Task 2:
medium, Task 3: complex) as the within-subject factor and condition (self-explaining vs. control) as the
between-subjects factor showed that bias differed across the three complexity levels, F(2, 152) = 53.50, p
< .001, [eta]p2 = .413. Post hoc analyses showed that bias in self-assessment on the problem-solving task
of complexity Level 1 differed significantly from Level 2 (p < .001) and from Level 3 (p < .001). Whereas the
bias in self-assessment between the second and third problem-solving task did not differ (p = .212). This
means self-assessments were more accurate at complexity Level 1. In contrast to Hypothesis 1a, no
effect of condition was found, F(1, 76) < 1, p = .661, [eta]p2 = .003. The interaction between bias across

complexity levels and condition approached significance, F(2, 152) = 2.77, p = .066, [eta]p2 = .035.
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Next to bias, absolute accuracy of self-assessment during the posttest was measured to investigate
monitoring accuracy. A repeated measures ANOVA with absolute accuracy per complexity level (Task 1:
easy, Task 2: medium, Task 3: complex) as the within-subject factor and condition (self-explaining vs.
control) as the between-subjects factor showed that absolute accuracy differed as a function of
complexity level, F(2, 152) = 27.70, p < .001, [eta]p2 = .267. Post hoc analysis showed that absolute
accuracy in self-assessment on problem-solving task complexity Level 1 differs significantly from Level 2
(p < .001) and from Level 3 (p < .001), whereas the absolute accuracy in self-assessment between the
second and third problem-solving task did not differ (p = .927). Again, this means self-assessments were
more accurate at complexity Level 1. In contrast to hypothesis 1a, no effect of the between-subject factor
condition was found, F(1, 76) < 1, p = .382, [eta]p2 = .010. There was no interaction between absolute

accuracy across complexity levels and condition, F(2, 152) = 2.17, p = .118, [eta]p2 = .028.

Regulation-choice effectiveness

To analyze regulation effectiveness, the relation between self-assessments and restudy choices made
after each problem-solving task in the posttest was calculated (cf. discrepancy-reduction model, de Bruin
et al., 2011; Nelson et al., 1994). A repeated-measures ANOVA with regulation-choice effectiveness per
complexity level (Task 1: easy, Task 2: medium, Task 3: complex) as within-subject factor and condition
(self-explaining vs. control) as between-subjects factor was performed. The results showed that
regulation-choice effectiveness differed between the three complexity levels, F(2, 152) = 11.32, p < .001,
[eta]p2 = .130. Post hoc analysis showed that regulation-choice effectiveness on problem-solving task
complexity Level 3 differed significantly from Level 1 (p < .001) and from Level 2 (p = .001), whereas the
regulation-choice effectiveness between the first and second problem-solving task did not differ (p =
1.00). As can been seen in Table 3, regulation choice effectiveness was lower for the third complexity
level, which means that the regulation choices showed less correspondence with the self-assessments. In
contrast to Hypothesis 1b, no effect of the between-subject factor condition was found, F(1, 76) < 1, p =
.429, [eta]p2 = .008. In addition, no interaction between regulation-choice effectiveness over complexity

levels and condition was found, F(2, 152) < 1, p = .942, [eta]p2 = .001.

Types of explanations

In Table 5 the number of occurrences of the different types of self-explanations and the correlation
between the five types, absolute accuracy of self-assessment, regulation-choice effectiveness, and
posttest performance are shown. Because anticipative self-explanations only occurred once, this type of
explanation was left out of the correlation analysis. Partly in line with Hypothesis 2a, only the self-
explanations that were not relevant showed a significant correlation (r = .486) with absolute accuracy. The
correlation is positive which means that the more "not relevant" self-explanations were given, the higher
the absolute deviation between self-assessment and actual performance was (i.e., less accurate self-
assessment). No significant correlations between the types of self-explanations and regulation choice
effectiveness were found. Partly in line with Hypothesis 2b, posttest performance did correlate with both
the goal-operator (r = .581) and the not relevant (r = -.719) type of self-explanations. The correlation with
goal-operator was positive which means that with more goal-operator self-explanations, posttest
performance was higher. In contrast, the correlation between not relevan' and posttest performance was
negative. This means that with more "not relevant" self-explanations, posttest performance was lower.

5 Pearson's Correlations Between the Five Types of Self-Explanations, Absolute Accuracy of Self-Assessment,
Regulation-Choice Effectiveness and Posttest Performance for Experiment 1 and Experiment 2
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Performance

A repeated-measures ANOVA with test moment (pretest vs. posttest) as within-subject factor and
condition (self-explaining vs. control) as between-subjects factor showed that all participants improved
from the pretest to the posttest, F(1, 80) = 154.23, p < .001, [eta]p2 = .658. In contrast to Hypothesis 1c,

no effect of condition was found, F(1, 80) = 1.42, p = .237, [eta]p2 = .017. Also, there was no interaction

effect between test moment and condition, F(1, 80) < 1, p = .858, [eta]p2 < .001.

Discussion
The results of Experiment 1 showed consistent relations between problem complexity, monitoring and
regulation choices. Performance in lower complexity problems was not only more accurately monitored
than performance in higher complexity problems but was also related to more correct regulation choices.
These results support the close connection between monitoring accuracy and regulation choices
proposed in self-regulation theories (Thiede et al., 2003; Zimmerman, 2008). However self-assessments
and restudy choices were not very accurate for more complex problem-solving tasks. Thus, accurate
monitoring and regulation seemed to be difficult for high school students when learning to solve complex
problems. In contrast to Hypotheses 1a and 1b, self-explaining how to solve biology problems after
watching video-modeling examples on this subject did not improve participants monitoring or regulation
choice effectiveness. That is, both self-assessment accuracy and regulation-choice effectiveness did not
differ between the conditions in which participants had to self-explain the problem-solving procedure
compared with watching the video-modeling example again. Hence, self-explaining as a generative
activity did not seem to provide learners with more valid cues to judge there understanding of the
problem-solving procedure.

Yet, a closer inspection of the type of self-explanations shows that "not relevant" self-explanations were
significantly related to self-assessment accuracy. This relation indicates that self-assessment accuracy
was lower when students made more not relevant self-explanations. Posttest performance was related to
two types of self-explanations (goal-operator and not relevant). The goal-operator self-explanations were
helpful for performance, whereas not relevant self-explanations were not. These findings seem to be in line
with the cue utilization framework (Koriat, 1997), as students who gave not relevant self-explanations
might have focused on invalid cues for monitoring.

Although the correlation coefficients between high-quality self-explanations and monitoring accuracy did
not reach statistical significance, they pointed into the expected direction. A possible explanation for our
findings that self-explaining did not significantly enhance monitoring, is that providing these self-
explanations right after watching the video was not the right moment for the students to engage in self-
explaining. That is, students were watching how to solve a problem but did not solve the problem
themselves. According to the cue-utilization framework (Koriat, 1997), task experience is important as it
provides cues on performance that can be used to monitor the learning process. Indeed, in studies in
which students had to solve a practice problem after studying a worked example, monitoring accuracy
improved presumably because the experience of solving the practice problem gave students valuable
cues about their performance (Baars et al., 2014, 2016). Therefore, in Experiment 2 students were asked
to self-explain the problem-solving procedure after trying to solve a posttest problem.

Experiment 2
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In Experiment 2 the same research questions as in Experiment 1 were investigated. Yet, there was a slight
difference in the moment during which participants had to self-explain their learning process. That is,
students engaged in self-explaining during solving the posttest problem-solving tasks. In Experiment 1 the
complexity of the problem-solving task affected monitoring and regulation choices. This was presumably
the case because working memory resources are limited (Baddeley, 1986; Cowan, 2001) and monitoring
one's learning processes also requires working memory resources (Griffin et al., 2008; van Gog et al.,
2011). Similarly Winne (1995) pointed out that less experienced learners have not yet automatized
monitoring processes and therefore monitoring tasks can even obstruct access to cognitive resources
needed for solving the particular problem.

When a student has to solve problems, monitor his or her performance and on top of that self-explain
what he or she is trying to learn, the demand on limited cognitive resources might be even higher. To
investigate the cognitive load experienced by students in Experiment 2, the mental effort that students
invested in solving the problem-solving tasks was also measured during the posttest. This way we could
investigate if higher experienced mental effort is related to self-explaining quality, monitoring, and
regulation choices accuracy. Studies on monitoring judgments when learning to solve problems found
mental effort ratings to be related to monitoring judgments that could indicate mental effort is used as a
cue to make monitoring judgments (Baars et al., 2013, 2016).

Like in Experiment 1, it was expected that self-explaining would improve monitoring accuracy (Hypothesis
1a), regulation choice effectiveness (Hypothesis 1b) and performance (Hypothesis 1c). Also, we aimed to
investigate the quality of the self-explanations (Question 2). On the basis of previous work (Chi et al.,
1994; Renkl, 1997, 1999), we expected the principle-based, goal-operator and anticipative explanations to
be related to more accurate monitoring (Hypothesis 2a) and better performance (Hypothesis 2b).
Furthermore, we expected that invested mental effort would be positively related to the monitoring
accuracy measure (Hypothesis 3a). This means the lower mental effort would be, the lower the deviation
between the monitoring judgments and the actual score would be, and thus the better monitoring
accuracy would be. Invested mental effort was also expected to be negatively related to regulation
choices effectiveness (Hypothesis 3b). The higher mental effort required, the lower the regulation choice
effectiveness would be. Finally, invested mental effort was expected to be negatively related to the
number of principle-based, goal-operator and anticipative self-explanations (Hypothesis 3c).

Method
Participants and design

Participants were 60 Dutch secondary education students (Mage = 14, SD = 0.18, 32 female) who were
recruited from schools in the southwest of the Netherlands. They were enrolled in their second year of
preuniversity or higher education track (VWO and HAVO). Parents of the students in the second year and
the students themselves received a letter with information about the purpose and the content of the study,
an invitation to participate, and that asked for their consent. Participants were randomly allocated to either
the self-explanation condition (n = 33) or control condition (n = 27).

Materials

The materials used in Experiment 2 were similar to thosed used in Experiment 1, except for the mental
effort ratings that were added to Experiment 2.

Mental effort ratings
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Self-reported mental effort is a widespread measure within cognitive load theory research (for an overview
see Paas, Tuovinen, Tabbers, & Van Gerven, 2003; Whelan, 2006). It has been used in many different
studies, both with children and adults (e.g., Baars et al., 2014; Paas, 1992; van Gog, Kirschner, Kester, &
Paas, 2012). Mental effort invested during the posttest phase was measured on a 9-point scale, ranging
from 1 (very, very low mental effort) to 9 (very, very high mental effort), after each test task. Because we
had multiple ratings for mental effort during the posttest phase, we calculated an average score of mental
effort for the posttest. Cronbach's alpha for the mental effort ratings on the posttest was .88. The mental
effort ratings were sensitive to variations in complexity as evidenced by differences across the posttest
tasks, F(2, 86) = 51.52, p < .001, [eta]p2 = .55. Mental effort ratings after the first posttest task were not
significantly different from mental effort ratings after the second posttest task (p = .066). Both the first (p <
.001) and the second (p < .001) mental effort ratings were different from the third mental effort ratings.

Self-monitoring

The Cronbach's alpha for the three self-assessment was .63. Bias and absolute accuracy were calculated
for 18 students from the self-explaining condition and 27 students from the control condition. This was the
case because 15 students from the self-explaining condition did not fill out all the monitoring judgments.

Procedure

The procedure was similar to the procedure in Experiment 1. Only the self-explanations were given at a
different moment. Students explained each step of the problem-solving task for each of the three posttest
problem-solving tasks after a mental effort rating and self-assessment were provided. Therefore, the
control condition did not have to watch the video-examples again. They could continue to the next
posttest problem-solving task without self-explaining.

Data analysis

Test performance

Like in Experiment 1, performance on the pre- and posttest problems was rated per step as either
incorrect (0) or correct (1). Also for the pre- and posttest in Experiment 2, a PCA was conducted with
oblique rotation (promax).

On the pretest the first item correlated significantly with the second (r = .268) but not with the third item (r
= .228), which was the most complex one. The second and third items were significantly related to each
other (r = .291). For the pretest, the KMO measure verified the sampling adequacy for the analysis (KMO =
.610), and all KMO values for individual items were >.59, which is above the acceptable limit of .5 (Field,
2009). Bartlett's test of sphericity, [chi]2(3) = 10.854, p = .013, indicated that correlations between items
were sufficiently large for PCA. An initial analysis was run to obtain eigenvalues for each component in the
data. One component had an eigenvalue over Kaiser's criterion of 1 and explained 50.85% of the
variance. All items in the pretest cluster on one component which suggests that this component
represents performance on the hereditary problems in the pretest.

On the posttest the first item correlated significantly with the second (r = .393) and the third item (r = .413).
The second and third item were significantly related to each other (r = .440). Also for the posttest, the
KMO measure verified the sampling adequacy for the analysis (KMO = .665), and all KMO values for
individual items were >.65, which is above the acceptable limit of .5 (Field, 2009). Bartlett's test of
sphericity, [chi]2(3) = 26.956, p < .001, indicated that correlations between items were sufficiently large for
PCA. Again, one component had an eigenvalue over Kaiser's criterion of 1 and explained 61.04% of the
variance. All items in the posttest cluster on one component, which suggests that this component
represents performance on the hereditary problems in the posttest. Table 3 shows the component score
coefficient matrix for both the pretest and posttest.

Results
Descriptive statistics
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Table 4 shows means and standard deviations of pretest performance, posttest performance, self-
assessment, number of restudy choices, posttest mental effort, bias and absolute accuracy, and
regulation choice effectiveness per problem-solving task for both conditions. Also, the number of restudy
choices per problem-solving task is provided in Table 4. Both conditions did not differ on the pretest, t(58)
< 1, p = .437.

Monitoring accuracy

To analyze monitoring accuracy, bias in self-assessments during the posttest was investigated. A
repeated-measures ANOVA with bias per complexity level (Task 1: easy, Task 2: medium, Task 3: complex)
as a within-subject factor and condition (self-explaining vs. control) as a between-subjects factor showed
that bias did not significantly differ across the three complexity levels, F(2, 86) = 1.42, p = .246, [eta]p2 =

.032. In contrast to Hypothesis 1a, no effect of condition was found, F(1, 43) < 1, p = .461, [eta]p2 = .015.
There was no significant interaction between bias across complexity levels and condition, F(2, 86) < 1, p =
.790, [eta]p2 = .005.

Next to bias, absolute accuracy of self-assessment during the posttest was also measured to investigate
monitoring accuracy. A repeated measures ANOVA absolute accuracy per complexity level (Task 1: easy,
Task 2: medium, Task 3: complex) as with a within-subject factor and condition (self-explaining vs. control)
as a between-subjects factor showed that absolute accuracy differed across the three complexity levels,
F(2, 86) = 4.37, p = .016, [eta]p2 = .092. Post hoc analysis showed that absolute accuracy in self-
assessment on problem-solving task complexity Level 1 differs from Level 3 (p = .059) but this does not
reach the significance level. The absolute accuracy on the second complexity level differed significantly
from the third level (p = .045). Whereas the first and second problem-solving task did not differ (p = 1.00).
As shown in Table 4, absolute accuracy is better at complexity Levels 1 and 2 compared with Level 3. In
contrast to Hypothesis 1a, no effect of condition was found, F(1, 43) < 1, p = .788, [eta]p2 = .002. There
was no interaction between absolute accuracy across complexity levels and condition, F(2, 86) = 1.82, p =
.169, [eta]p2 = .041.

Regulation choices accuracy

To analyze regulation effectiveness, the accuracy of restudy choices made after each problem-solving task
in the posttest was calculated. A repeated-measures ANOVA with regulation-choice effectiveness per
complexity level (Task 1: easy, Task 2: medium, Task 3: complex) as a within-subject factor and condition
(self-explaining vs. control) as a between-subjects factor was performed. The results showed that
regulation-choice effectiveness differed across the three complexity levels, F(2, 86) = 12.09, p < .001,
[eta]p2 = .219. Post hoc analysis showed that regulation-choice effectiveness on problem-solving task
complexity Level 3 differs significantly from Level 1 (p = .001) and from Level 2 (p = .002), whereas the
regulation-choice effectiveness between the first and second problem-solving task did not differ (p =
1.00). Regulation-choice effectiveness was higher for complexity Levels 1 and 2 compared with Level 3. In
contrast to Hypothesis 1b, no effect of condition was found, F(1, 76) < 1, p = .366, [eta]p2 = .019. There
was no interaction between regulation-choice effectiveness across complexity levels and condition, F(2,
86) < 1, p = .936, [eta]p2 = .002.

Types of explanations
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In Table 5, the number of occurrences of the five types of self-explanations, absolute accuracy of self-
assessment, regulation-choice effectiveness, and posttest performance are shown. The anticipative self-
explanations were not used by the students and are therefore not present in this analysis. Partly
confirming Hypothesis 2b, posttest performance correlates significantly with two types of self-
explanations. The goal-operator correlates positively with posttest performance (r = .380), which means
that when more goal-operator self-explanations were used, posttest performance was higher. Also, "not
relevant" self-explanations correlated with posttest performance but they did so negatively (r = -.432). This
means that when more "not relevant" self-explanations were used, posttest performance was lower.

Mental effort ratings

Both the self-explanations (M = 4.26, SD = 2.11) and the control (M = 4.09, SD = 1.85) condition invested
a medium amount of mental effort which did not differ significantly between conditions, t(43) < 1, p = .773.
Also, for both the self-explanations (r = -.566, p = .014) and the control (r = -.567, p = .002) condition,
invested mental effort was significantly related to self-assessment score. Furthermore, in line with
Hypothesis 3a and 3b, invested mental effort was significantly related to the absolute accuracy of
monitoring judgments (r = .576, p < .001), regulation-choice effectiveness (r = -.342, p = .021), and
performance (r = -.522, p < .001). In contrast to Hypothesis 3c, no significant correlations with one of the
types of self-explanations were found.

Performance

A repeated-measures ANOVA with a within-subject factor moment (pretest to posttest) and a between-
subjects factor condition (self-explaining vs. control) showed that, all participants improved between the
pretest and the posttest, F(1, 58) = 183.92, p < .001, [eta]p2 = .760. In contrast to Hypothesis 1c, there

was no effect of condition, F(1, 58) = 1.47, p = .231, [eta]p2 = .025. Yet, a significant interaction between

test moment and condition was found, F(1, 58) = 5.30, p = .025, [eta]p2 < .084. A t test with pretest score
as dependent variable and condition as the independent variable showed no differences between
conditions, t(58) < 1, p = .437. A t test with posttest performance as dependent variable and condition as
independent variable showed that the difference between the control (M = 3.63, SD = 1.12) and the self-
explaining condition (M = 2.98, SD = 1.48) approached significance, t(58) = -1.88, p = .065.

General Discussion
The aim of the current study was to investigate self-explaining as a generative strategy to improve
monitoring and regulation processes when learning to solve problems. Two experiments showed that the
quality of students' self-explanations when either watching video-modeling examples or when solving
problems differed between students. In line with findings by Renkl (1997), Chi et al. (1989), and the cue
utilization framework (Koriat, 1997), the quality of self-explanations matters for monitoring accuracy and
performance. In contrast to the findings by Griffin et al. (2008), monitoring and control processes were not
improved for students who self-explained when learning problem-solving procedures or when performing
problem-solving tasks. This result calls for new ways of supporting students when monitoring their
learning process when learning to solve problems.

Monitoring judgment accuracy was measured with bias and absolute accuracy in both experiments. In
Experiment 1 bias and absolute accuracy of the monitoring judgments were more accurate for the least
complex problem-solving task. In the second experiment absolute accuracy showed the same pattern in
which monitoring judgments seemed more accurate for the least complex problem-solving task, but this
did not reach significance. These results are in line with earlier findings (Griffin & Tversky, 1992; Koriat et
al., 1980; Lichtenstein & Fischhoff, 1977) and indicate that the complexity of the problem-solving tasks
affects monitoring accuracy. Possibly, because the demand on working memory was smaller for the easier
problems compared with the more complex problems, there could have been more room for monitoring
the learning process when working on an easier problem.
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It is worth noting that self-explaining did not aid monitoring as it did in the study by Griffin et al. (2008).
Self-explaining might have been an extra task next to learning to solve problems which was too
demanding for students to benefit from it. Next to learning how to solve the problems and monitoring this
process, there might have been little room for providing self-explanations. Looking at the number of
principle-based and anticipative explanations in Experiment 1 and the absence of anticipative self-
explanations in Experiment 2 (see Table 5), it seems that it was hard for students to give these types of
qualitative explanations during the learning process. From a cue utilization perspective (Koriat, 1997), the
high-quality self-explanations provide students with valid cues to make monitoring judgments and base
their regulation choices on. Yet, self-explanations of poor quality could provide students with invalid cues
which will not help them to monitor their learning and could even harm this process (e.g., Thiede, Griffin,
Wiley, & Anderson, 2010). Looking at the negative correlation between the 'not-relevant' self-explanations
and monitoring accuracy in Experiment 1, it seems plausible that poor quality self-explanations provided
invalid cues.

Additionally, students who participated in the current study never employed self-explanations to guide
their learning process in the classroom before. Perhaps if students first receive a training about how to
provide self-explanations and which types of self-explanations are useful for their learning process (i.e.,
principle-based, goal-operator and anticipative; cf. Renkl, 1999), self-explanations would indeed be more
beneficial for their learning process. Also, in a study by Cho and Jonassen (2012), having high school
students reflect on their self-explanations by comparing them with the instructional explanation improved
the effectiveness of self-explaining. This could be an interesting avenue for future research on the
effectiveness of self-explaining when learning to solve problems. Especially, by reflecting on self-
explanations students could be stimulated to think about the metacognitive processes during learning,
which could provide them with diagnostic cues for making monitoring judgments (cf. mnemonic cues;
Koriat, 1997).

For regulation choices we found similar results as for monitoring judgments. Regulation-choice
effectiveness was not improved in the self-explaining condition. According to models of SRL (Winne &
Hadwin, 1998), it was to be expected that regulation would not be improved if monitoring was not affected
to begin with. Yet, regulation choices were more accurate for the least complex problems indicating that
for making accurate regulation choices the limited cognitive resources could also have played a role.
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An important difference between the studies by Chi et al. (1989) and Griffin et al. (2008) and the current
study is the type of materials that students had to study. Chi et al. found that "good" students who used
explanations about actions and principles also showed more accurate monitoring when learning from
worked examples. Griffin et al. found that self-explaining provided students access to more valid cues to
monitor learning from explanatory texts. Perhaps, students are better able to give self-explanations about
explanatory texts or worked examples (which also contain some text). To learn to solve problems, one
needs both declarative knowledge and procedural knowledge. Possibly, the procedural knowledge
needed to solve a problem is more difficult to provide self-explanations about which in turn affects
monitoring and regulation negatively (cf. Winne, 1995). However, the video-modeling examples in the
current study provided students with an example that is similar to the worked examples in the study by
Chi et al. (1989). Moreover in the study by Chi et al., the students also had to use procedural knowledge to
complete problem-solving tasks during the test. Yet, the sample size used in the study by Chi et al. was
very small (n = 10), which could also be a reason why our findings deviate from their findings. In addition,
Ainsworth and Loizou (2003) found that using diagrams reduced memory load and elicited more self-
explanations compared with using text (without diagrams) when learning about blood circulation. Possibly,
using diagrams when learning to solve biology problems encouraged students to access their situation
model and by that helped students to give self-explanations. Finally, the monitoring judgment and
measurement of monitoring accuracy differed between the current study and the study by Griffin et al.
(2008). Griffin et al. used correlations between judgments about understanding/judgments of
comprehension of a text and actual performance (i.e., relative measure), whereas in the current study the
absolute deviation between the judgments about the amount of correct steps and actual correct steps
(i.e., precision measure) was used. According to Schraw (2009), different judgments and measures of
accuracy can reveal different results. Future research could investigate the role of the type of judgments
(e.g., prospective vs. retrospective) and the measurement of accuracy when using generative strategies to
improve monitoring judgment accuracy.

In line with earlier work on self-explanations (Chi et al., 1989; Renkl, 1997, 1999), the type of self-
explanations affected both cognitive and metacognitive processes in the current study. Partly in line with
Hypothesis 2b, in both experiments goal-operator self-explanations were positively correlated to
performance. Moreover, the self-explanations that were not relevant were negatively correlated to
performance. Yet, only in Experiment 1, the "not relevant" self-explanations were negatively related to the
absolute accuracy of monitoring judgments (Hypothesis 2a).

In Experiment 2, invested mental effort was measured to investigate the relation between mental effort
ratings, monitoring, regulation and self-explaining performance. Unlike metacognitive judgments, mental
effort ratings are not related to a specific domain or task but can be seen as a basic feeling of workload
(cf. physical effort). Gopher and Braune (1984; see also Paas & Sweller, 2012) have shown that persons
can introspect on their cognitive processes and assign numerical values to the invested mental effort. In
contrast, metacognitive judgments are based on a high level cognitive processing related to the content of
a particular task: A person has to monitor whether he or she understands the task or performed it
correctly. Interestingly, mental effort was related to metacognitive accuracy (the lower mental effort the
better monitoring accuracy), suggesting that students used perceived mental effort as a possible cue for
their metacognitive judgments. This finding is consistent with earlier studies on learning to solve problems
and monitoring the learning process (Baars et al., 2013, 2016), thus providing additional support for the
idea that students used their mental effort ratings as a cue for their monitoring judgments.
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The current study has some limitations. Following up on previous work (Chi et al., 1989; Griffin et al., 2008;
Renkl, 1997, 1999), this study aimed to investigate the effect of self-explanations on monitoring,
regulation, and problem-solving performance in secondary education. Yet, because many learning
activities take place in online learning environments in which students communicate by writing, we used
written self-explanations in an online learning environment. This could have created a difference to
previous studies in which spoken self-explanations were employed and consequently lead to different
results. Future research could investigate possible differences between written and spoken self-
explanations in the context of learning to solve problems. Furthermore, in the current study both
experiments took place in a 50-min session fitting the timetable of the participating secondary schools.
This also means that students only had 50 min to learn about the problem-solving tasks, to make
monitoring judgments, regulation choices, and to self-explain. Future research could investigate whether a
multiple session study in which students are first trained to perform all these actions would help students
to benefit from self-explaining during the learning process. Also, the type of problem-solving task should
be considered in future research. That is, in the current study a cumulative problem-solving task was used
in which steps were either correct or incorrect. This means that students needed the answer to Step 1 to
move on to the other steps, and no credits were given for using the right procedure with wrong answers.
This might have affected the performance of students negatively. However, posttest performance was
quite high in the current study, and therefore the type of task did not seem to have harmed student
performance. In addition, a more elaborate way of measuring regulation of study could be used in such a
multiple session study. Students could be allowed to actually restudy or practice the problem-solving task
they choose again and asked to provide reasons for their regulation choices (i.e., interest or boredom).
Finally, in the second Experiment, 15 students did not complete all the monitoring judgments which could
have led to a bias in the results. However, these students did not differ in their pretest performance from
the other students, t(58) < 1, p = .766.

To conclude, results from the current study showed that the complexity of the problems affected
monitoring and regulation indicating that the demand on cognitive resources plays an important role in
monitoring and regulating learning processes. Also the quality of self-explanations affected monitoring
and performance. Yet, students in the self-explanation condition did not monitor, regulate, or perform
better when learning to solve genetics problems. Our findings nuance existing findings (e.g., Griffin et al.,
2008) because our findings show that self-explaining new and complex problem-solving tasks does not
improve monitoring accuracy for secondary education students. From a cue utilization perspective (Koriat,
1997), self-explanations of low quality could have led to invalid cues, whereas high-quality self-
explanations could have provided students with more valid cues. This means that the effect of self-
explaining on SRL could be different for different types of task depending on the quality of self-
explanations and complexity of the materials. Therefore, the findings in our study show new avenues for
research which can advance the field. For example, training students how to provide high-quality self-
explanations is a promising idea for future research. Furthermore, self-explaining could have created an
extra demand on the limited resources students have which might have reduced the effectiveness of self-
explaining to improve monitoring when learning to solve problems. Reflecting on self-explanations could
theoretically help students to think about metacognitive processes after providing self-explanations about
a problem-solving task. That way, reflecting on self-explanations could provide students with more
diagnostic cues for making monitoring judgments without increasing the load during problem solving or
providing self-explanations. Future research could follow up on these questions by using a set of tasks
differing in complexity to investigate when self-explaining is beneficial for learning to solve problems and
how we can scaffold monitoring processes when learning to solve problems.
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